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1. Introduction

The black hole information paradox [1] is one of the great thought experiments in physics.

Three decades of effort have made it clear that it has no trivial resolution, but indeed re-

quires a modification of some central principle of physics [1], although the focus has largely

shifted from a breakdown of quantum purity to a holographic nonlocality of quantum

gravity [2, 3].

The information paradox was largely responsible for the intense scrutiny given to

the dynamical properties of black branes, which led to the discovery of gauge/gravity

duality [4]. This duality in turn implies that information is not lost, because one can

describe the formation and decay of a black hole within systems that have a well-defined

dual description in an ordinary quantum framework.1

This argument for information preservation is rather indirect. In order to calculate the

black hole S-matrix, one must translate the initial infalling state into the dual field theory,

evolve forward in the field theory variables, and translate back into the outgoing state of

the Hawking radiation. It would be desirable to have a prescription entirely in terms of

the bulk gravitational variables, since this is how the Hawking radiation, and the apparent

1In stating that the dual theory is well defined, we have in mind the superrenormalizable duals introduced

in ref. [5], as well as the BFSS Matrix Theory [6], which is a quantum mechanical example of gauge/gravity

duality.
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information loss, is found. Indeed, the proposed answers to the question “Where does

the argument for information loss break down?” are now as diverse as the answers to the

original question “What happens to information thrown into a black hole?” We may hope

that the attempt to answer this new question will be as fruitful as it was for the earlier one.

It is notable that some features of the black hole persist even in the weakly coupled

gauge theory, where the spacetime interpretation of the bulk breaks down. The contin-

uation of the Hawking-Page transition [7, 8] to weak coupling has been studied exten-

sively [9 – 12]. It has also been argued that vestiges of the black hole singularity [13] and

of the information problem [14] survive at weak coupling.2

Ref. [14] considers the information problem in the form presented in ref. [15]. The

low energy gravitational field theory description of AdS black holes shows quasinormal

behavior, the exponential decay of correlations in time [19, 20]. This description should be

valid at large N and large ’t Hooft parameter, where the curvature is small. In the dual

field theory, exponential decay is possible at infinite N , where the thermal field theory has

an infinite number of states and can absorb an arbitrary amount of information. However,

at large finite N exponential decay can only persist until the correlations are of order

e−O(N2), because the black hole has only a finite number of states and so the correlator is

a sum of a finite number of exponentials. Reconciling this with the prediction of the low

energy bulk field theory is a manifestation of the information paradox.3

Ref. [14] argues that signs of the quasinormal behavior can be seen at arbitrarily weak

coupling, in that perturbation theory breaks down at long times no matter how small the

coupling is. We would like to extend this, resumming the perturbation theory to see the

explicit form of the late-time behavior. The graphs considered in ref. [14] have a simple

iterative structure that suggests such a resummation. However, we would like to find a

situation in which this resummation is systematic, in that it represents the full planar

amplitude. This would provide a setting for discussing the breakdown of the large-N

approximation, which is dual to the loop expansion of the bulk theory.

We identify a simple system with the desired property: a harmonic oscillator in the

U(N) adjoint representation plus a harmonic oscillator in the U(N) fundamental, coupled

through a trilinear interaction. In particular, it is sufficient to consider the limit of a single

fundamental excitation in interaction with the adjoint oscillator. One can think of the

adjoint as a heat bath coupled to the fundamental, and we study the decay of correlations

of the fundamental field.

This model may have a number of realizations; one can think of it as a reduced version

of a D0-brane black hole with a D0 probe, where the matrix variables are the 0-0 fields and

the fundamentals are the 0-0probe fields [22, 23]. It might actually arise in some decoupling

limit, although of course it would be a limit of large spacetime curvature. This simple

model may also have applications outside of black hole physics, along the lines of the

Caldeira-Leggett model [24].

2Ref. [13], and our work, model the weakly coupled duals to the AdS5 × S5 or Matrix Theory black

holes. The weakly coupled limit of the BTZ black hole is also interesting, and the corresponding questions

have been explored in refs. [15 – 18].
3The relation between the information paradox and the discreteness of the spectrum is discussed further

in ref. [21].
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In section 2 we introduce the model. It has the same graphical structure as the ’t

Hooft model of two-dimensional QCD [25]. Unlike the ’t Hooft model there are dynamical

adjoints, but we achieve the simplified graphical structure of the ’t Hooft model by stip-

ulating that the adjoints have no self-interaction. We first consider zero temperature; we

derive the Schwinger-Dyson equation, which reduces to a two-term recursion equation with

respect to frequency. The singularities consist of poles on the real axis. We also analyze

the quantum mechanics canonically, leading to a closed-form solution a zero temperature.

In section 3 we consider nonzero temperature. Again, the Schwinger-Dyson equation

reduces to an iterative equation, but with three terms rather than two. In this case we can

argue that the correlator for the fundamental field must approach zero at long times (in the

planar limit). Numerically, we show that the decay is power law for small couplings and

exponential for couplings that are sufficiently large; the power law regime is likely an artifact

of our model that has no analog for the black hole. We develop briefly the approximate

solutions for small coupling and small mass. We also extend the model, by the introduction

of decoupled sectors and the singlet constraint, so as to obtain a Hagedorn transition.

In section 4 we discuss some implications for the information problem.

2. Zero temperature

2.1 The model

The fields are a Hermitian matrix Xij(t) and a complex vector φi(t), with conjugate mo-

menta

[Xij ,Πkl] = iδilδjk , [φi, πj ] = iδij . (2.1)

The Hamiltonian is

H =
1

2
Tr(Π2) +

m2

2
Tr(X2) + π†(1 + gX/M)π +M2φ†(1 + gX/M)φ . (2.2)

In terms of the lowering operators for the fundamental and antifundamental,

ai =
π†i − iMφi√

2M
, āi =

πi − iMφ†i√
2M

, (2.3)

this is (dropping a constant)

H =
1

2
Tr(Π2) +

m2

2
Tr(X2) +M(a†a+ ā†ā) + g(a†Xa+ ā†XT ā) . (2.4)

We do not impose the singlet constraint for now, and so there is no Hawking-Page transi-

tion. In section 3.4 we will extend this model to include these features.

There are several motivations that lead us to this model. The model of ref. [14] is

based on iteration of the basic graphical unit shown in figure 1. In our case, the basic

process is just the upper half of this graph, above the dashed line: a vector emitting and

reabsorbing an adjoint. The doubling of the graph in ref. [14] plays no essential role, so

our model should have similar properties. Moreover, we will see that for us the iteration

represents the full planar approximation, whereas in ref. [14] it is just a partial summation,
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Figure 1: The basic graphical unit studied in ref. [14]. Iteration of this leads to breakdown of

perturbation theory at long times. Our model iterates a basic unit which is just one side of this,

above the dashed line.

while the full planar summation would be much harder. For the purpose of systematic

study of the breakdown of the 1/N approximation, it is useful that one can sum the full

planar amplitude.

In fact, a very similar model has already been studied in refs. [22, 23] as an approx-

imation to the quantum mechanics of D0-branes. That model is more elaborate, in that

the fields carry additional indices, and there are fermions, with supersymmetry. However,

the basic graphical structure is the same; in particular the self-interaction of the adjoints

is replaced with a quadratic potential, via a mean field approximation. In refs. [22, 23], the

adjoints form a D0-brane black hole, and the fundamental is a string stretched from a probe

D0-brane to the black hole. We will be studying the correlator in the one-fundamental sec-

tor. Essentially, we are looking at waves traveling on the stretched string, particularly as

they fall into the black hole. (Ref. [26] considered a similar situation.)

This system (2.4) has no ground state, because the highest term is cubic in the fields.

However, the Hamiltonian commutes with the number operators Nφ = a†a and Nφ̄ = ā†ā,
and in each (Nφ, Nφ̄) sector there is a ground state. Defining

H ′ = H + c(Nφ +Nφ̄)(Nφ +Nφ̄ − 1) , (2.5)

the eigenstates of H ′ are the same as those of H, and for sufficiently large c and M the

ground state will be in the sector Nφ = Nφ̄ = 0. We assume this henceforth.

In fact, for our purposes we need study only the behavior of a single particle in the

fundamental represention, in interaction with the matrix heat bath. To isolate this we will

take the splitting M for the fundamental oscillator to be large compared to all other scales,

in particular the temperature, and we focus on the observable

eiM(t−t′)
〈

T ai(t)a
†
j(t

′)
〉

T
≡ δijG(T, t− t′) . (2.6)

Note that t and t′ are Lorentzian, and that in the present section we are interested in

temperature T = 0. By construction, the stabilizing term (2.5) vanishes in the relevant

sectors Nφ = 0, 1, Nφ̄ = 0, and so we can calculate with the original H (2.4). Including the

phase factor in the correlator, the dependence on M drops out in the large-M limit. Thus

there are essentially two parameters at zero temperature, m, and g with units of m3/2. In

– 4 –
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Figure 2: Schwinger-Dyson equation for planar contributions to G̃(ω) (propagator with shaded

rectangle) in terms of G̃0(ω) and K̃0(ω).

terms of the analogous brane system, taking M to be large means that the probe brane is

far from the black hole.

2.2 The Schwinger-Dyson equation

At zero temperature, the sum of all planar contributions to the correlator (2.6) is given by

the Schwinger-Dyson equation

G̃(ω) = G̃0(ω) − λG̃0(ω)G̃(ω)

∫ ∞

−∞

dω′

2π
G̃(ω′)K̃0(ω − ω′) , (2.7)

where λ = g2N and

G̃0(ω) =
i

ω + iǫ
, K̃0(ω) =

i

ω2 −m2 + iǫ
. (2.8)

This is shown graphically in figure 2. This has the same form as in 2-D QCD [25] because

the index structure of the interaction is the same. The integral can be carried out. Because

a annihilates the vacuum, G(t) vanishes for t < 0 and so G̃(ω) is nonsingular in the upper

half-plane. Also, because the coupling g has mass dimension 3/2 we can assume that G̃

has its free behavior i/ω at high frequency. We can then close the contour in the upper

half-plane and evaluate the residue at ω′ = ω −m+ iǫ to obtain

G̃(ω) =
i

ω

(

1 − λ

2m
G̃(ω)G̃(ω −m)

)

. (2.9)

We omit the iǫ from this equation, with the understanding that the correlator is to be

evaluated infinitesimally above the real axis.

In section 2.3 we will solve this in closed form, but first let us study it using a variety

of analytic and numerical approaches. To get our bearings, let us consider first the limit

m → 0 with 2λ/m ≡ ν2 fixed. Eq. (2.9) becomes the algebraic equation

ν2G̃2(ω) − 4iωG̃(ω) − 4 = 0 , (2.10)

and so

G̃(ω) =
2i

ν2

(

ω −
√

ω2 − ν2
)

=
2i

ω +
√
ω2 − ν2

. (2.11)
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On the physical sheet, the square root approaches ω at long distance. The ω = 0 pole has

been broadened into a branch cut of width 2ν.

This has a simple interpretation. We are taking the harmonic oscillator frequency m to

0, so the matrix X is essentially a static variable with an eigenvalue distribution given by

the Wigner semi-circle law. The propagator (2.11) is just the free propagator with mass µ =

gX, averaged over a semi-circle eigenvalue distribution forX of width
√

2N/m. The branch

cuts in ω translate into the asymptotic power law decay e±iνtt−3/2. However, this power law

decay is unrelated to the quasinormal behavior that we seek: it originates from the noncom-

pactness of X due to the vanishing of the potential at m = 0, rather than the large-N limit.

Writing eq. (2.9) as a recursion relation

1

G̃(ω)
=
ν2

4
G̃(ω −m) − iω . (2.12)

gives an efficient way to calculate numerically, beginning with the asymptotic behav-

ior G̃(ω) ∼ i/(ω+ iǫ). In order this procedure to work, we must require that the recursion

be stable at large |ω| — otherwise, subasymptotic terms could grow to become significant.

Suppose that there is a solution G̃∗(ω), and we consider a perturbation G̃∗(ω)+γ(ω). Then

γ(ω) = −ν
2

4
G̃2

∗(ω)γ(ω −m) . (2.13)

The recursion is stable towards increasing ω when |ν2G̃2
∗(ω)| ≤ 4, and stable towards

decreasing ω when the inequality is reversed. Since G̃(ω) = O(ω−1) at large |ω|, the

recursion is stable there in the direction of increasing ω. Given perfect numerical precision,

we could start at very large negative ω and use the convergence to bring us very close to

a solution. Even if the recursion became unstable for some intermediate range, we could

make the initial error as small as desired. In practice, a highly unstable recursion would

lead to a numerical errors. This is an potentially an issue at small m, where the recursion

requires many steps. In fact, using the m = 0 solution (2.11) one finds that the recursion

to the right is no worse than neutrally stable in this limit.

Before performing the numerics, we can anticipate that the branch cut found at m = 0

must break up into poles. Since there is no branch cut at large ω, none can appear through

the recursion. However, whenever the right-hand side of eq. (2.12) vanishes, there will be a

pole in G̃(ω). Generically this will happen at isolated points on the real axis, because the

right-hand side is purely imaginary there. The numerical integration verifies this picture:

the branch cut breaks up into poles as m is turned on, and the poles move further apart as

m is increased with ν fixed. Zero temperature results for the real part of G̃(ω) are shown

in figure 3 for ν = 1, m = 0.05 and in figure 4a for ν = 1, m = 0.80.

There is a temptation at small m to approximate the recursion (2.12) by a differential

equation, but this does not seem to be useful: the differential equation is less stable than

the recursion relation. They agree on smooth configurations, but have different eO(ω/m)

instabilities.

– 6 –
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Re G(ω+0.01i)

ω

Re G(ω+0.1i)

1

2

3

−1 0 1 ω

∼

∼

a)

b)

Figure 3: a) The real part of G̃(ω) for ν = 1, m = 0.05, evaluated 0.01 units above the real axis

to give the delta functions finite width. b) The same function evaluated 0.1 units above the real

axis: the poles merge into an approximate semicircle distribution.

2.3 Canonical calculation

The intermediate states in figure 2 consist of a single φ excitation plus any number of X

excitations, with the indices contracted:

|j, r〉 = N−r/2a†i (A
†r)ij |v〉 , r ≥ 0 , (2.14)

where |v〉 is the free ground state and A†
ij = (Πij + imXij)/

√
2m is the raising operator.
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The states |j, r〉 are orthonormal at large N . Then

(H −M)|j, r〉 = mr|j, r〉 +
iν

2
|j, r + 1〉 − iν

2
|j, r − 1〉 − iν

2

r−1
∑

l=1

N−1−l/2(A†l)kk|j, r − l− 1〉 .

(2.15)

The last term has norm of orderN−1 and so drops out in the planar limit. The noncompact-

ness in r suggests that this model may show quasinormal behavior at finite temperature.

Defining

|j, ψ〉 =

∞
∑

r=0

ψr|j, r〉 , (2.16)

we have the eigenvalue condition

(ω −mr)ψr =
iν

2
(ψr−1 − ψr+1) , ψ−1 ≡ 0 . (2.17)

This is essentially the Bessel recursion relation. Specifically,

ψr = i−rJr−ω/m(ν/m) . (2.18)

Here i−rNr−ω/m(ν/m) would satisfy the same recursion relation, but only the solu-

tion (2.18) is normalizable. The eigenvalue condition J−1−ω/m(ν/m) = 0 determines

the poles in the correlator. With this clue, we can find the closed-form solution to the

Schwinger-Dyson equation (2.9),

G̃(ω) =
2i

ν

J−ω/m(ν/m)

J−1−ω/m(ν/m)
. (2.19)

3. Finite temperature

3.1 The Schwinger-Dyson equation

Now consider the system at nonzero temperature. To study real-time thermal correlators

one generally needs the doubled integration contour of the Schwinger-Keldysh formal-

ism [27 – 29]. However, our situation simplifies. First, we are assuming that M is large

compared to the temperature, so there are no φ excitations in thermal equilibrium. Second,

the X fields have no self-interaction, so the thermal ensemble is free.4 In this case the real-

time formalism reduces to replacing the X propagator with the free thermal propagator,

K̃0(T, ω) =
i

1 − e−m/T

(

1

ω2 −m2 + iǫ
− e−m/T

ω2 −m2 − iǫ

)

. (3.1)

The Schwinger-Dyson equation is changed only by the use of this propagator,

G̃(T, ω) = G̃0(ω) − λG̃0(ω)G̃(T, ω)

∫ ∞

−∞

dω′

2π
G̃(T, ω′)K̃0(T, ω − ω′) . (3.2)

4Note that in any event the backreaction of the fundementals on the adjoints is suppressed in N .
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The time-ordered correlator G(T, t) still vanishes at t < 0 (because M ≫ T ) and so we

can again close the contour in the upper half-plane and pick up only the poles of K̃0(T, ω).

This gives

G̃(T, ω) =
i

ω

{

1 − ν2

4(1 − e−m/T )
G̃(T, ω)

[

G̃(T, ω −m) + e−m/T G̃(T, ω +m)
]

}

, (3.3)

or

G̃(T, ω −m) − 4

ν2
T

1

G̃(T, ω)
+ e−m/T G̃(T, ω +m) =

4iω

ν2
T

(3.4)

with ν2
T = ν2/(1 − e−m/T ).

Although this is similar to the zero-temperature Schwinger-Dyson equation, the be-

havior of its solutions is very different. At zero temperature the singularities of G̃(ω) are

poles on the real axis. At nonzero temperature such poles are impossible.

To see this, note first the spectral representation,

G(T, t− t′) = NTr
(

e−H/T a1(t)a
†
1(t

′)
)

= N
∑

A,B

|〈A|a1|B〉|2θ(t− t′)e−EA/T−i(t−t′)(EB−EA) ,

(3.5)

where N−1 = Tr e−H/T . The Fourier transform is

G̃(T, ω) = iN
∑

A,B

e−EA/T |〈A|a1|B〉|2
ω − EB + EA

= i

∫ ∞

−∞

dµF (µ)

ω − µ
. (3.6)

We have introduced the nonnegative spectral density

F (µ) = N
∑

A,B

e−EA/T |〈A|a1|B〉|2δ(µ −EB + EA) . (3.7)

Now, suppose that there is a pole in G̃(T, ω) at some ω0. Then the first term on the l.h.s.

of eq. (3.4) has a pole at ω = ω0 +m. This must be cancelled either by a pole in the last

term with a residue of the opposite sign, or by a pole in the second term from a zero of

G̃(T, ω) at ω = ω0 +m. The spectral representation forbids a negative residue, so the zero

must exist. Similarly we can conclude that there is a zero at ω0 −m. It then follows that

all three terms on the l.h.s. vanish at ω = ω0, which is a contradiction except possibly for

a pole at ω0 = 0 (which is indeed present in the free theory).

The absence of poles, and so of delta-functions in F (µ), immediately implies that the

correlator goes to zero asymptotically in time: this model has the planar behavior that

we seek. If the zero temperature poles separate into branch cuts on the real axis there

will be power law falloff; if the singularities drop below the real axis onto the second sheet

the decay will be exponential. We find numerically that at small nonzero temperature

the poles widen into branch cuts, while at higher temperature the cuts merge and the

singularities drop below the axis. We will present these results in section 3.2, after some

further analytic discussion.

– 9 –
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The recursion relation again becomes algebraic in the limit m→ 0, now with ν2
T fixed,

(1 + e−m/T )ν2
T G̃

2(T, ω) − 4iωG̃(T, ω) − 4 = 0 . (3.8)

The solution is

G̃(T, ω) =
2i

(1 + e−m/T )ν2
T

(

ω −
√

ω2 − (1 + e−m/T )ν2
T

)

. (3.9)

The logic is the same as at zero temperature, with the eigenvalue distribution thermally

broadened.

The three term recursion relation (3.4) is unstable in both directions, so its solution

is less constrained than at zero temperature. We can derive some useful results from the

real part Re G̃(T, ω) = πF (ω). Then

F (ω −m) − 4

ν2
T |G̃(T, ω)|2

F (ω) + e−m/TF (ω +m) = 0 . (3.10)

First, if the spectral density has support in any segment of the real axis then it has support

in every segment translated by a multiple of m. Thus, when the poles spread into branch

cuts, each cut is accompanied by an unbounded series of additional cuts. This does not

contradict the known asymptotic behavior, because the magnitude of F (ω) goes to zero at

large ω. The form of the falloff follows from the fact that coefficient of the middle term in

eq. (3.10) becomes large asympotically, 4ω2/ν2
T . The recursion relation is then dominated

by two terms,

F (ω −m)/F (ω) ∼= e−m/T ν2
T /4ω

2 , ω → −∞ ,

F (ω +m)/F (ω) ∼= ν2
T /4ω

2 , ω → +∞ , (3.11)

so the spectral density behaves asymptotically as |ω|−O(|ω|).

3.2 Numerical results

The instability of the recursion relation makes numerical calculation challenging. One

approach would be to fine tune the initial condition. However, we have had more success by

a different approach, solving the stable zero temperature recursion relation and then solving

the coupled differential equations obtained by differentiating the recursion relation (3.4)

with respect to T at fixed νT . Figures 4 show F (ω) for a series of temperatures from zero

to infinity, with νT = 1 and m = 0.8.

At zero temperature (a) this is a set of delta functions, meaning poles in G̃(ω). At low

temperature (b) the poles become short branch cuts, and additional cuts appear, shifted by

multiples of m. As the temperature is increased (c) the cuts lengthen and begin to merge,

but there are still gaps. At higher temperatures (d) the cuts have completely merged and

F (ω) is everywhere positive and smooth: the singularities have moved onto the second

sheet. The recursion relation and its solution have a sensible infinite temperature limit (e).

In the infinite temperature limit the equation is symmetric under G̃(ω) → G̃(−ω∗)∗, and

this symmetry provides a check on the numerical approach. We have verified numerically

– 10 –
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a)  y = 0

b)  y = 0.04

c)  y = 0.25

d)  y = 0.70

e)  y = 1

−2 0 2ω

Figure 4: The real part of G̃(ω) for νT = 1, m = 0.80, and various values of y = e−m/T . The

vertical axis is rescaled at each temperature for best visibility (the actual area under the curve is π

at all temperatures), and at zero temperature ω is taken slightly above the real axis for the same

reason.

that the high-temperature solution is smooth out to |ω| = 4, and the asymptotics (3.11)

imply that nonanalyticity cannot arise at large ω if not present at smaller values.

– 11 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
8

−15

−10

−5

−0

�
2πt/m

10
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Figure 5: The logarithm of the real time infinite temperature correlator, ln |G(t)|, for νT = 1,

m = 0.8, and T = ∞. For clarity, time differences of 2π/m are displayed: on shorter intervals the

correlator shows strong oscillations due to interference of singularities spaced by multiples of m.

The Fourier transform of figure 4e is shown in figure 5. Two exponentials are evident.

The amplitude and decay rate of the first few points matches the central peak in figure 4e.

The long-lived exponential arises from the closest pole to the real axis, which has a residue

smaller by a factor of order 10−2. This appears to be associated with the last branch cuts

to merge, and with the kink near ω = 0.3 in figure 4d (examination with greater resolution

verifies that the function in figure 4d is smooth at this point).

3.3 Some approximations

Thus, our simple model has the behavior that we seek. It would be good to have an

approximate analytic treatment of the quasinormal behavior. This is difficult because the

model has three energy scales, m, νT , and T , and the quasinormal behavior disappears if

any are set to zero.5 Note that in figure 4 we have taken νT = 1, m = 0.8, near the middle

of parameter space, because the numerics are cleanest there.

We can develop an approximate solution when any of the parameters is small; here we

note a few features of two such approximations.

3.3.1 Small λ (small νT )

The ordinary perturbation theory in λ is singular here at long times [14]. In our model,

this shows up as the fact that each additional order of perturbation theory brings addi-

tional poles in G̃(T, ω), even within the 1PI part. However, we can obtain an improved

5There is power law decay at m = 0, but as we have noted this is not associated with large N .
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approximation from what we know of the solution. We expect that the pole at ω = 0 will

turn into a short branch cut, and that additional branch cuts will develop translated by

multiples of m. From the structure of the recursion relation, the spectral weight in the

branch cut at ω = mk will is of order g−2|k|. Again, ν2
T = 2λ/m(1 − e−m/T ). To see the

branch cut we focus on ω ≪ m, for which the recursion relation implies

G̃(T, ω −m) − 4

ν2
T

1

G̃(T, ω)
+ e−m/T G̃(T, ω +m) =

4iω

ν2
T

,

G̃(T, ω) − 4

ν2
T

1

G̃(T, ω +m)
=

4im

ν2
T

,

− 4

ν2
T

1

G̃(T, ω −m)
+ e−m/T G̃(T, ω) = −4im

ν2
T

. (3.12)

In the second and third lines we have have used ω ≪ m on the r.h.s. , and have dropped

one term on the l.h.s. because G(T, ω ± 2m) ≪ G(T, ω). Using these we can eliminate

G(T, ω ±m) to obtain the cubic equation

iωyG̃(T, ω)3 +(−1+y−y2−ωτ +yωτ)G̃(T, ω)2 + iτ(2−2y+ωτ)G̃(T, ω)+τ2 = 0 , (3.13)

where y = e−m/T and τ = 4m/ν2
T . For simplicity consider the limit y → 1, where

iωG̃(T, ω)3 − G̃(T, ω)2 + iωτ2G̃(T, ω) + τ2 = 0 . (3.14)

At ω = 0, G̃(T, ω) = τ is purely real. However, the discriminant for this equation vanishes

at ω2 = (11 + 53/2)/2τ2, beyond which the solution is purely imaginary. This determines

the branch cut width O(τ−1) = O(λ/m2[1 − y]).

These results have been confirmed numerically. Note that the spectral density implied

by the cubic equation is more complicated than the semicircle law that might have been

expected for a short cut.6 The cuts at ω ±m are also determined by the relations (3.12)

and are smaller by O(λ). The further cuts are given by the two-term recursion (3.11) and

are down by λ|k| as expected. One can systematically carry this small-λ approximation

to higher order and no singularities arise, so we have found the quantitative small-λ

behavior. The branch points imply power law decay, so there is again a contradiction with

the finite-N behavior.

3.3.2 Small m

At small m the recursion relation goes over naively to the differential equation

m(1 − e−m/T )G̃(T, ω)G̃(T, ω)′ = (1 + e−m/T )G̃(T, ω)2 − 4iω

ν2
T

G̃(T, ω) − 4

ν2
T

, (3.15)

where the prime denotes an ω-derivative. We are holding m/T fixed. If T were held fixed

the l.h.s. would be of order m2 and we would need to keep also a second derivative term,

but the conclusions would be similar. The derivative term is a perturbation, but a singular

6The discriminant also vanishes at ω2 = (11 − 53/2)/2τ 2, so there is another branch cut not far below

the real axis.
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one [30]: it can become large in regions of large gradient. Again it is useful to study the

stability near a solution G̃∗, expanding G̃ = G̃∗ + γ:

m(1 − e−m/T )G̃∗γ
′ = −m(1 − e−m/T )G̃′

∗γ + 2(1 + e−m/T )G̃∗γ − 4iω

ν2
T

γ . (3.16)

Assuming that the solution G∗ is close to the algebraic solution (3.9), one finds that the so-

lution is stable toward increasing ω for ω < −ν̂ and for ω > ν̂, where ±ν̂ = ±νT

√

1 + e−m/T

are the branch points of them = 0 solution, and stable toward decreasing ω for −ν̂ < ω < ν̂.

Thus, starting from the known asymptotic behavior at large negative ω, the differential

equation has a unique solution which is close to the m = 0 solution for ω < −ν̂ and then

blows up rapidly, as eων̂ . Similarly by starting at ω = ν̂ and integrating in both directions

one obtains a solution that is close to the m = 0 solution for ω > −ν̂ and blows up beyond

this point. These solutions clearly do not match onto one another as a single solution to

the differential equation. The point is that near the branch point ω = −ν̂ the gradients

become of order 1/m and we must use the original discrete form of the equation. The full

solution requires matching this ‘boundary layer’ solution with the smooth outer solutions

that we have found. The details are an interesting direction for future work. In particular,

the singularities will be closest to the real axis in the boundary layer, where the variation

is the most rapid, and so this part of the solution dominates the long-time behavior.

3.4 The Hawking-Page transition

In the model thus far, we have not imposed the singlet constraint that generally is present

in quantum mechanical realizations of gauge/gravity duality. In consequence, there is no

phase transition as the temperature is varied. These features can be restored without

altering the earlier results, by introducing some decoupled sectors. First, to form a singlet

we need an antifundamental excitation, which we can obtain from an additional decoupled

oscillator. It would be more natural to excite an antifundamental excitation of the original

φ oscillator, but then we would also need to include ladder graphs as in ref. [25]; this may

be an interesting direction for future work.

The thermal phase transition with large-N oscillators has been studied in ref. [31]

and in more detail in ref. [12]. We will review this very briefly. The singlet constraint is

enforced by integrating over a Wilson-Polyakov line U in the Euclidean time direction. At

fixed diagonal U the adjoint thermal propagator is

∫ ∞

−∞
dt eiωt〈TXij(t)Xkl(0)〉 = δilδjk

{

i

ω2 −m2 + iǫ

+
π

m

∞
∑

n=1

[

(e−m/TUiiU
−1
jj )nδ(ω+m)+(e−m/TUjjU

−1
ii )nδ(ω−m)

]

}

. (3.17)

The sum represents paths that wind around the Euclidean time direction ±n times, each

winding picking up a phase from the Wilson-Polyakov line. All adjoint propagators in a

graph are evaluated with the same U , which is then integrated over. The φ propagator

is unaffected because M is large: paths that wind around the Euclidean time direction do

not contribute.
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We extend the previous model by the addition of an adjoint oscillator of frequency

m′. This is decoupled from the other fields except through the singlet constraint, that is,

through its coupling to U . The phase transition occurs when [12]

e−m/Tc + e−m′/Tc = 1 . (3.18)

As m′ → 0, Tc → 0 and as m′ → ∞, Tc → ∞, so we can adjust the transition to take place

at any temperature.

At T < Tc, the eigenvalues Uii are uniformly distributed on the unit circle, so that
∑

i U
n
ii = 0 for any finite n. It then follows that the U -dependent terms from eq. (3.17) drop

out in every trace at leading order in N , so the correlator reduces to its zero temperature

form (see for example refs. [32, 33]) Thus there is no quasinormal behavior.

At T > Tc the eigenvalues become nonuniform, and at T ≫ Tc they are concentrated

around the identity. For T ≫ m′ we can replace U with the identity, and the propaga-

tor (3.17) reduces to its form (3.1) without the singlet constraint. We then recover the

quasinormal behavior found earlier.

4. The information paradox

Now let us return to the information paradox, and discuss what we might learn. Our

model does not capture all aspects of the paradox, spacetime locality in particular: like

the weakly coupled gauge theory, there is no large bulk dual and no notion of spacetime

locality. At best, the model represents a bulk theory in a large curvature limit.

What the model does preserve is the large-N structure, the existence of dissipative

behavior in the planar limit that does not survive at finite N . The 1/N expansion in

gauge/gravity duality is dual to the loop expansion in quantum gravity. It is a crucial

question, how the preservation of information is manifested in this expansion. Whatever

form the answer takes, there should be some parallel in our model.

For example, there have been many proposals over the years that evidence for infor-

mation restoration can be seen in the breakdown of the gravitational loop expansion even

at low orders; see ref. [34] for a recent discussion along these lines. A rather different pro-

posal is that the restoration arises from nonperturbative effects in the gravitational loop

expansion, additional saddle points that were omitted in the original argument [15, 35].

These two approaches would correspond respectively to an order-by-order breakdown of

the 1/N expansion, and to the contribution of e−O(N2) effects.

The saddle point proposal has been analyzed critically in refs. [16, 17, 36 – 39]. We

can paraphrase their key argument as follows. In the planar approximation, in the regime

where the singularities lie below the real axis, the spectral density F (µ) = Re G̃(µ)/π has

support on the whole real axis. At finite N , this must break up into poles with a typical

spacing e−O(N2). If we consider an observable corresponding to the convolution of G̃(µ)

with some smooth function, the effect is only of order e−O(N2), and so looks as though it

might be captured by a saddle point contribution [15, 35]. However, if we measure G̃(µ)

at a precise value of µ, the effect is of order one (or larger), which cannot be captured by

such a saddle point.
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A Euclidean saddle point gives a contribution to the density matrix, so with two such

saddles we have

ρ =
ρ1 + eS1−S2ρ2

1 + eS1−S2

, (4.1)

with ρ1 and ρ2 normalized density matrices and S2 − S1 of order G−1 ∼ N2. This implies

for the correlator

F =
F1 + eS1−S2F2

1 + eS1−S2

. (4.2)

Observing the order one effect requires measurements on a time scale of order eO(N2), which

suggests the possibility of a compensating N -dependence.7 However, the extra saddle

points do not have the necessary enhancement: we need that the total residue of the poles

in F (µ) be 1. The dominant saddle gives a continuum with total weight 1− e−O(N2), while

the secondary saddles may give poles but with total weight e−O(N2).

Our discussion suggests a further problem with this idea. Namely, the difference be-

tween the planar and finite-N behavior already shows up in the basic model presented in

section 2.1, without the singlet constraint and without the Wilson line variable U . The

additional saddle discussed in refs. [15, 35] appears in the U -integration.

We should be alert to possible artifacts of our model. In particular, the fact that we

find power law decay at small g for arbitrarily large temperatures is likely connected with

the fact that the fields in our adjoint heat bath are free, so states do not mix as completely

as they should. We expect that in the weakly coupled gauge theory (at temperatures

above the Hawking-Page transition) there will be exponential decay. However, the power

law decay is already in contradiction with the finite-N behavior, so for our purposes we

can regard this as quasinormal behavior.

Because we do not have a bulk spacetime, we cannot separate stringy physics from

gravitational field theory. That is, we capture the gravitational loop expansion but not the

α′ expansion. Thus we cannot directly investigate proposals such as those in refs. [40, 41],

which relate information recovery to specifically stringy physics.

Our discussion has been entirely in the field theory language. The dual language would

correspond to working with U(N) invariants such as products of A and A†, either traced

or in bilinears with a and a†; it would be interesting to develop this further. In this form,

finiteness of N shows up as relations between these invariants; for example, Tr(Ak) can

be expressed in terms of lower traces for k > N . One does not expect these relations to

be visible in perturbation theory in 1/N , since for any given k they turn on abruptly at

a finite value of 1/N . Rather, they seem to imply that the closed string bulk variable are

simply not good variables for nonperturbative gravity.

This reduction of the number of independent variables is the ‘stringy exclusion prin-

ciple’ [42]. It has been related to the growth of the size of objects at high energy [43].

The information paradox also implies another reduction in the size of the Hilbert space,

the ‘black hole complementarity principle’ [44]. For example, in an eternal AdS black hole

7For black holes that decay, the time scale is very much shorter. However, in this case one must observe

of order N2 particles, so again there is the possibility of an offsetting factor.
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there is an infinite number of infalling modes at the horizon; however, only a Bekenstein-

Hawking entropy’s worth can be independent. The idea that black hole complementarity is

a consequence of the stringy exclusion principle is implicit in various places; the formulation

of the information paradox in ref. [15] makes it particularly clear.

Growth of string states near the horizon was discussed in refs. [45, 46]. Unlike the case

studied in ref. [43], where the string blows up into a spherical D3-brane, at the horizon it

grows into a randomly walking long string. In the gauge theory, the former corresponds to

the trace of a large power of a single field, while the latter suggests the more generic case

of the trace of a random sequence of fields.

D-branes are related to the (2nloop)! growth of perturbation theory [47], versus nloop!

in field theory, and to the associated e−1/gs effects (though they cannot be the only such

effects [48]). Given the connection between the stringy exclusion principle and D-branes,

we are led to conjecture that the breakdown of low energy effective field theory in the

neighborhood of a black hole is manifested by a (2nloop)! growth of perturbation theory,

and by e−O(1/
√

G) nonperturbative effects, as compared to e−O(1/G) contributions from

field theory saddles. This conjecture is just based on analogy; we do not have any specific

scenario for how these large high order amplitudes appear, and for how the e−O(1/
√

G)

effects become order one in certain observables.

Lastly, we note an interesting recent paper [49] on the time scale for black hole in-

formation return. The arguments of this paper rest on certain assumptions about the

thermalization process. It may be possible to investigate these in our model, or some

extension of it.
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